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Abstract 
 
 VANETs (Vehicular Ad Hoc Networks) can improve safety and enable a wide range of 
internet services, such as location based services. The problem is VANETs can also be used for 
tracking vehicles, raising privacy concerns. To confuse potential eavesdroppers some researchers 
have approached the problem by having network nodes transmit dummy data along with true 
data. Few such proposals consider vehicular applications where network nodes, vehicles, often 
travel along predictable paths, roadways. In this paper our approach is to examine one generic 
dummy-based scheme which we applied in a vehicular context. The results we found were that, 
with modifications, the scheme may be useful in certain vehicular situations. 
 
1. Introduction 
 
 This paper considers the application level vehicle location tracking problem. How can 
vehicles conceal their locations from a location based service, LBS, an internet service provider 
which requires vehicle position as user input?  
 
 Spatial cloaking is a well researched solution to this problem but spatial cloaking requires a 
trusted third party, TTP. We consider only cases when spatial cloaking and TTP are undesirable, 
for example, at times when there is only one vehicle (or very few vehicles) using the LBS.  
 
 Vehicular ad-hoc networks, VANETs, are self-configuring communication architectures 
which enable vehicles in motion to intercommunicate as nodes in computer networks. VANETs 
present distinctive location privacy challenges for motorists because vehicles tend to travel along 
predictable routes, roadways. If a motorist uses LBS while driving, an LBS administrator may be 
able to monitor the motorist's position. Vehicles may attempt to confuse LBS by sending 
false/dummy location data. However, LBS might identify a sequence of locations as a set, or 
trajectory. Trajectories consisting of multiple dummy events must follow a pattern similar to a 
vehicle path or the dummy trajectory will be detectable as fake by LBS that uses vehicle pattern 
analysis. Further, each dummy location must correspond to a real location on a roadway 
otherwise the dummy location could be detectable as fake if LBS uses map deanonymization, 
cross-referencing the dummy location to a real road map on Mapquest or Google Maps.   

 The vehicle location tracking problem is important and has received attention from both 
legislators and researchers. Legislation has been introduced at the national level, including the 
Location Privacy Act and the Geolocation Privacy and Surveillance Act. This legislation has 



Proceedings of the 2014 ASEE North Central Section Conference 
Copyright © 2014, American Society for Engineering Education 

	  

been difficult to pass perhaps because its technical implications are unclear. Technical solutions 
are proposed frequently but counterproposals defeating the solutions are proposed almost equally 
frequently. If no technical solution emerges to enable drivers to protect the location privacy of 
their vehicles’ from LBS, then surveillance may become unpreventable; therefore perhaps 
inevitably it may become socially acceptable. LBS might even sell this unavoidably public data 
as additional services. Employers might monitor an employee’s car parked at a competitor’s 
office (revealing an employee’s job interview) or at specialized medical facilities (revealing an 
employee’s health condition). It is not difficult to construct further privacy breaches arising from 
vehicle surveillance by spouses and ex-spouses, or paparazzi and other stalkers. 

 The location privacy challenge from a technical standpoint is large-scale and complicated 
in VANETs. Equipment supporting wireless/Wi-Fi networks is already being installed in new 
vehicles. Industry representatives estimate that 90% of vehicles will be Wi-Fi-connected within 
the decade [1]. LBS usage continues to grow rapidly [2] and is expected to expand to VANET 
platforms [3]. Standards governing VANETs [4] have outlined sophisticated encryption schemes 
to enable privacy, but researchers continue to find privacy vulnerabilities inherent in VANET 
protocols and vehicle mobility patterns. 

 Our primary contribution is demonstrating the technique in [5] in vehicle scenarios and 
evaluating some of the implications. The rest of this paper is organized as follows. Section 2 
describes related work done in [5] upon which our results are founded. Section 3 describes our 
demonstration of the original model and our modifications for vehicular situations. Section 4 
presents simulation results assuming Manhattan-style roadways and compares similar results 
using no roadways. Section 5 concludes the paper. 
 
2. Related Work 
 
 The foundation for our research is presented in [5], which attempts to minimize the number 
of dummies required for given levels of short term disclosure (SD), long-term disclosure (LD) 
and distance deviation (dst). [5] evaluates human-like trajectories of mobile users, illustrated in 
Fig. 1 (a). Our work evaluates vehicle-like trajectories as illustrated in Fig. 1 (b).  

 

 
Fig. 1: (a) Human-like trajectories. (b) Vehicle-like trajectories. 

 
 Short term disclosure (SD) is a measure of the probability of an eavesdropper successfully 
identifying any particular true location given a set of true and dummy locations over a 
presumably short time. If there are m time slots and Di is the set of true and dummy locations at 
time slot i, where | Di | is the size of Di, then 
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 Long term disclosure (LD) is a measure of the probability of an eavesdropper successfully 
identifying a true trajectory given a set of true and dummy trajectories. The more trajectories 
overlap, the lower the probability of detection. If there are n total trajectories and k trajectories 
that overlap, then there are n – k trajectories that do not overlap. If Tk is the number of possible 
trajectories amongst the overlapping trajectories, then 
 
 LD = 1 / ( Tk + ( n – k ) ) (2) 
 
 Distance deviation (dst) is the average of distance between trajectories of dummies and the 
true user. To define dsti as the distance deviation of user i, let PLj

i be the location of user i at the 
jth time slot and let Lj

dk be the location of the kth dummy at the jth time slot. The function dist() 
express the distance between the true user location and the dummy locations. Then 
 

  (3) 
 
 [5] proposes two dummy generation methods, random pattern scheme and rotation pattern 
scheme. The random pattern scheme would arbitrarily choose a starting point, ending point and 
points in between for dummy trajectories. The rotation pattern scheme would ensure overlap, 
extending the random pattern scheme by also arbitrarily choosing an intersection point and 
rotation angle for dummy trajectories. Recall: The more trajectories overlap, the lower the LD. 
 
 
3. Demonstration 
 
 To illustrate the difference between human-like trajectories and vehicle-like trajectories 
consider Fig. 2. While humans may roam freely and move relatively slowly, vehicles tend to 
move in more predictable patterns much more quickly. Fig. 2 (a) shows how dummies d1 and d2 
may be undetectable as dummies because their movement patterns are human-like. Fig. 2 (b) 
shows how dummies d1 and d2 are detectable as fakes in vehicular contexts. Dummy d1 is 
detectable because it does not follow a vehicle-like pattern. Dummy d2 is detectable because, 
while it moves in a vehicle-like pattern, some of the positions are not on roadways, or it is easy 
to detect that it is impossible to move from one position to another by using a known roadway. 
Numerical data for the true user and dummies in Fig. 2 (b) are presented in Table 1. 
 

  
Fig. 2: Random patterns for human-like trajectories, (a) from [5], and (b) viewed over roadways. 
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Table 1: Privacy measurement of random pattern scheme dummy trajectories from Fig. 2 (b) 
 
Time slot, i (m = 6) 1 2 3 4 5 6 
True vehicle location (3,1) (3,2) (4,2) (4,3) (3,3) (1,4) 
Dummy 1 location (6,1) (5,1) (4,2) (3,2) (2,2) (1,3) 
Dummy 2 location (4,4) (3,3) (6,2) (5,2) (4,1) (3,1) 
|Di|, number of unique locations 3 3 2 3 3 3 
Distance ( dist() ) 3.1 2.2 1.0 1.4 1.8 2.3 
 
 From equations (1), (2) and (3) we can compute SD, LD and dst for this user. See equations 
(4), (5) and (6) below. 
 
 SD = ( 1/6 ) * ( 1/3 + 1/3 + 1/2 + 1/3 +1/3 + 1/3 ) = 0.3611 (4) 
 LD = 1 / ( 5 + ( 3 – 2 ) ) = 0.1667 (5) 
 dst = ( 1/6 ) * (3.1 + 2.2 + 1.0 + 1.4 + 1.8 + 2.3 ) = 2.0 (6) 
 
 The scenario above illustrates the random pattern scheme. To illustrate the implications of 
the rotation pattern scheme consider Fig. 3. For human-like movement rotation angle may be 
chosen arbitrarily. For vehicle-like movement, because of often perpendicular roadways, it may 
be more advantageous to constrain dummy trajectories to rotations in increments of 90 degrees.  
 

 
Fig. 3: Rotation patterns for (a) human-like trajectories, from [5], and (b) vehicle-like trajectories. 

 
 Restricting the rotation angle offers both advantages and disadvantages. Constraints may 
be considered disadvantageous because vehicles have fewer potential paths to choose from as 
they move, which degrades SD. However, fewer potential positions for vehicles implies more 
potential overlap, which may improve LD. Consider the illustration in Fig. 4 and compare with 
Fig. 2 (b). The former shows trajectories more overlapping positions. Since vehicles frequently 
transmit precise positions it is possible for a vehicle to construct realistic dummy trajectories 
using real or realistic data from other vehicles on the road.  
 

 
Fig. 4: Modified rotation patterns for (a) vehicle-like trajectories and (b) human-like trajectories over roadways, 

from Fig. 2 (b). 
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Table 2: Privacy measurement of random pattern scheme dummy trajectories from Fig. 4 (a) 
 
Time slot, i (m = 6) 1 2 3 4 5 6 
True vehicle location (3,1) (3,2) (4,2) (4,3) (3,3) (1,4) 
Dummy 1 location (7,1) (6,2) (4,2) (5,3) (6,3) (6,4) 
Dummy 2 location (6,3) (5,3) (4,2) (4,3) (3,3) (2,3) 
|Di|, number of unique locations 3 3 1 2 2 3 
Distance ( dist() ) 3.8 2.6 0.0 1.0 3.0 3.6 
 
 From equations (1), (2) and (3) we can compute SD, LD and dst for this user. See equations 
(7), (8) and (9) below. 
 
 SD = ( 1/6 ) * ( 1/3 + 1/3 + 1/1 + 1/2 +1/2 + 1/3 ) = 0.5278 (7) 
 LD = 1 / ( 9 + ( 3 – 3 ) ) = 0.1111 (8) 
 dst = ( 1/6 ) * (3.8 + 2.6 + 0.0 + 1.0 + 3.0 + 3.6 ) = 2.0 (9) 
 
4. Simulation 
 
 We simulated scenarios similar to the illustration above, except we used 20 time slots and 5 
to 25 dummies on a grid of 50x50 squares. We computed SD, LD and dst for each scenario for 
each of two conditions, one where roadways were restricted to exist only in squares which had 
one dimension evenly divisible by 10, the other with no such restriction. We ran each scenario 
nine times and recorded the run with the median number of trajectory intersections.  
 

Table 3: Simulation data for scenarios (a) with road restrictions, and (b) without road restrictions 
 

(a) Roads restricted to every 10 squares in grid  (b) No road restrictions (rr) 
dummies 25 20 15 10 5  dummies 25 20 15 10 5 
rr = 10 10 10 10 10 10  rr = 0 0 0 0 0 0 
SD 0.04052 0.05031 0.06547 0.09464 0.17  SD 0.03853 0.04761 0.06270 0.09136 0.16666 
LD 0.01282 0.01538 0.02272 0.03703 0.1  LD 0.03571 0.04761 0.05555 0.07692 0.16666 
intersects 26 22 14 8 2  intersects 1 0 1 1 0 
dst 25.793 22.7686 26.5048 25.8764 20.6967  dst 23.8404 24.5140 25.6914 23.8121 31.6829 

 
 The charts in Fig. 5 show how restricting locations to realistic road paths reduces the 
chance of long term disclosure, LD (Fig. 5, right), while maintaining minimal effect on short 
term disclosure, SD (Fig. 5, left). 
 

         
Fig. 5: For varying numbers of dummy trajectories, calculations for (a) SD and (b) LD 
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5. Conclusion 
 
 Dummy locations which are not realistic in vehicular context may be detectable as fakes 
because location coordinates can be cross-referenced and validated using maps.  Our solution 
overcomes this problem by restricting dummy vehicles to roadways. This reduces the number of 
locations and therefore increases the number of overlapping trajectories which improves LD. The 
method in [5] modified by a 90 degree rotation, instead of random rotation, is more realistic in 
vehicular context and better protects privacy because the chance of long term disclosure is 
reduced.  
 
 Two key areas of future work include evaluation of realistic distance deviation and 
frequency of LBS requests. The foundation paper in [5] and our paper present purely abstract 
quantities. In vehicular settings we can and should estimate the privacy protection using realistic 
distances which will likely depend on the precision of GPS devices used in on-board VANET 
components. Continuous precise location tracking also remains a problem even more challenging 
than the general vehicle location tracking problem. If LBS receives dozens, hundreds or even 
thousands of requests per hour the privacy of a vehicle may become more difficult to protect. 
Further, dummy trajectories may become so numerous that the resulting congestion on the LBS 
server due to unnecessary database queries may render the technique impractical.  
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