

Proceedings of the 2019 ASEE North Central Section Conference
Copyright © 2019, American Society for Engineering Education

1

Utilizing the Full Range of MATLAB Capabilities in the Classroom

James E. Toney and Adithya Jayakumar

Department of Engineering Education

The Ohio State University

Columbus, OH 43210

Email: toney.35@osu.edu, jayakumar.5@osu.edu

Abstract

Since its origin as a platform for performing matrix calculations efficiently, MATLAB has

developed into a sophisticated general-purpose programming language. It is now the platform of

choice for introducing engineering students to computer programming, due to its flexibility and

ease of use. Recent enhancements to MATLAB capabilities have created new opportunities for

improving the efficiency of classroom instruction and for promotion of active and mastery

learning. In this paper we discuss our experience in adopting a number of recent MATLAB

enhancements in a second-year-level programming course for engineers at Ohio State. MATLAB

Grader is used for automatic submission and grading of basic in-class exercises, while MATLAB

Online’s folder-sharing capability serves as a vehicle for submission of assignments involving

graphical user interfaces or other interactivity. For more extensive assignments that are not

amenable to auto-grading, we have developed custom checker codes for students’ use in

validating their code prior to submission. Interactive live scripts, in tandem with the Top Hat

classroom platform, have supplanted static Powerpoint presentations to increase student

engagement.

In conjunction with these innovations, the course content has been re-designed to emphasize a

more mature approach to application development based on modular programming. Increased

emphasis has been placed on leveraging MATLAB’s unique capabilities for array processing, as

well as less commonly used data structures, including cell, structure, and string arrays.

Introduction

This paper discusses the design of a second-level MATLAB programming course for

engineering majors who have had previous exposure to the subject in the first-year program. The

students are nearly evenly divided among sophomores, juniors and seniors, with a small number

of freshmen in the spring semester. The objective of this course differs from most of those that

have been described in the literature, which typically fall into three categories:

• using MATLAB simulations as a vehicle to teach an engineering subject, such as signal

processing or mechanics1,2

• introducing basic concepts of programming using MATLAB as a foundation for further

computer science courses, which may utilize C++ or Java3

Proceedings of the 2019 ASEE North Central Section Conference
Copyright © 2019, American Society for Engineering Education

2

• combining an introduction to programming with coverage of MATLAB’s numerical

analysis capabilities for linear algebra, differential equation solving, etc.4

This course, by contrast, is a terminal programming course for students in less computation-

focused engineering fields. Its emphasis is on general programming, rather than numerical

analysis using built-in functions.

All engineering majors at Ohio State are introduced to programming in MATLAB as part

of the first-year Fundamentals of Engineering sequence. The honors version of the first-year

course progresses from MATLAB to C / C++ programming, which satisfies the computer

science requirement for an engineering degree. Non-honors students must take an additional

programming course; computer science & engineering (CSE) majors typically take C++ or Java,

while students in less computer-oriented majors may take Programming in MATLAB for

Engineers. Consequently, the majority of students in the latter class are civil, chemical, or

aerospace engineering majors, with most of the remainder being in welding engineering, food,

agricultural, and biological engineering, environmental engineering, or biomedical engineering.

Relatively few electrical and computer engineering (ECE) or mechanical engineering majors

take the course, and virtually no CSE majors.

In 2018 the course was re-designed to place greater emphasis on general principles of

structured programming, increase the use of active and mastery learning, and leverage recently

released MATLAB capabilities. The revised learning objectives are stated as follows:

Upon successful completion of the course, students will be able to:

• Design, implement and debug a moderately complex MATLAB program using a modular

approach

• Incorporate universal structures such as branching and looping into programs

• Utilize MATLAB-specific features to perform operations on large data sets efficiently

In conjunction with restructuring of the content, the pedagogical approach was revised to

increase emphasis on active and mastery learning and to use classroom time more efficiently. In

accordance with a modern “flipped classroom” model5, students watch lecture videos before

class; in class they answer review questions, follow along with demonstration examples, and

complete programming exercises.

Structure of the Course Content

 Since the programming background of the students varies widely – some have had only

the Fundamentals of Engineering course, while others have used MATLAB extensively in major

courses – the course begins with the most basic elements of MATLAB. The course content has

the following major components:

Proceedings of the 2019 ASEE North Central Section Conference
Copyright © 2019, American Society for Engineering Education

3

• Array operations and data analysis

• Input/Output and plotting

• User-defined functions and program structure

• Elements of programming (loops, branching)

• Data structures

• Graphical user interfaces

• Simulation

Compared to the previous edition of the course, increased emphasis has been placed on

modular programming, in contrast to unstructured, linear scripting. There is also increased

coverage of less commonly used data structures, including string, cell and struct arrays. The last

quarter of the course deals with discrete-time simulation, primarily applied to kinematics, with

the last day providing a rudimentary introduction to Simulink.

Major changes from the previous edition of the course include:

• Moving the coverage of relational and Boolean operators, logical arrays and logical

indexing much earlier. This change was motivated by our experience that if students are

taught to iterate over data with loops and if statements first, they never become

completely comfortable with MATLAB array operations and tend to fall back on the less

efficient approach.

• Introducing user-defined functions earlier and expanding the coverage of program

structure. In the past, when this topic was introduced much later, students became

habituated to unstructured, linear scripting. They tended to regard user-defined functions

as a special technique to be used rarely, rather than a fundamental approach to designing

programs.

• Adding a unit on debugging and testing. Previously, students were not formally

introduced to the debugger, and no emphasis was placed on testing of code. This left

them inadequately prepared to construct and debug the final team project.

• Greater emphasis on problem solving techniques of relevance to engineering, including

iterative solution of mechanics problems and cellular automata algorithms, exemplified

by Conway’s Game of Life.6 This increases the integrative nature of the course, with

mutually reinforcing computer science and engineering science content.7

• Expanded coverage of char, string, cell, and struct arrays. Since string arrays

were introduced into MATLAB recently, there is still much confusion about the

difference between a char array and a string, and when it is best to use a cell array

of char arrays to represent strings, rather than simply a string array. The course

materials and assignments have been revised to clarify these issues.

Proceedings of the 2019 ASEE North Central Section Conference
Copyright © 2019, American Society for Engineering Education

4

Structure of Activities and Assessments

 The latest version of the course has a multitude of activities and assessments geared

towards active learning and maximizing class participation. They are as follows:

• Pre-class videos

• Student polling

• In-class examples

• Exercises

• Application Assignments

• Projects

• Exams

Of the above, the Pre-class videos and In-class examples don’t contribute to the students’ grade

and only serve as a mechanism to convey the content. An overview of each is provided below:

Pre-class videos: The pre-class videos were incorporated into this course to maximize the

amount of class time where students could work on programming and problem-solving tasks.

This ‘flipped’ classroom approach provided more time for examples and in-class exercises, while

getting rid of the traditionally long presentation going over the subject matter. This also means

that students have the opportunity to get more questions answered immediately. Each class

typically has 2 to 4 short videos which should take students about 15 minutes in total.

In the interest of not re-inventing the wheel, high quality videos readily available through

Mathworks were used. The authors plan to create customized videos for more advanced topics

such as discrete- time simulation.

Student polling: The Top Hat platform is used to pose review or checkpoint questions. Students

are typically allotted 1 minute to complete each question, which can vary depending on the

complexity of the problem. Results of the polling are then shared followed by a quick discussion

about the correct answer. When there is a significant diversity of answers, students are given one

minute to discuss the problem with their neighbors. Those who are persuaded by their peers that

their initial answer was incorrect may change their response, as in Mazur’s peer instruction

approach.8

In-class examples: MATLAB Live scripts containing brief text explanations, explanatory

figures and code examples have largely supplanted the static Powerpoint presentations that we

used previously. Live scripts are a new addition to MATLAB which enable the integration of

text, images and equations into MATLAB script. Students download the live script from the

LMS and can run the ready-made examples along with the instructor and observe the output. The

files also include ‘You Try It’ sections, each of which gives students an opportunity to try a

practice problem themselves before the instructor provides the solution.

Proceedings of the 2019 ASEE North Central Section Conference
Copyright © 2019, American Society for Engineering Education

5

Exercises: Following the in-class examples, students work on the for-credit exercises. The

exercises are typically 2–5 short, application-centered questions, where students are required to

write the correct lines of code to solve each question. The majority of students are able to

complete the exercises within class, but they can be submitted until the beginning of the next

class without penalty, and until the next exam with a 20 % late penalty.

Students complete the exercises using MATLAB Grader, another recent add-on to MATLAB.

MATLAB Grader is an online tool, originally developed for use in massive open online courses

(MOOCs), which enables instructors to create their own questions and have students answer

them using an online interface. The system provides the opportunity for Mastery, as it allows

students to repeatedly try until they enter the correct solution.

Application Assignments: The application assignments are weekly programming assignments

that cover the week’s topic in more depth than the exercises. Since the students in the class are

from a wide range of majors, the topics covered by the applications are also diverse. This type of

assessment is needed to further reinforce the material that was covered and requires students to

think about material in a broader sense.

The application assignments are done in MATLAB and students submit their script file (.m file)

and the output of the program (command window messages and plots). These assignments,

unlike the exercises, are graded by the teaching assistants.

For application assignments that deal with graphical user interfaces (GUI), an alternate

submission process was devised using the folder sharing capability of MATLAB Online. After

developing their program on the desktop using GUIDE, students upload their code and figure to

a folder on their MATLAB Drive, which they then share with the teaching assistant. The TA can

evaluate their program by running it, without the need to download it.

Projects: There are 2 major projects that are a part of this course – the mid-semester project and

the final project. The mid-semester project is an individual project in which students visualize

and analyze a large, real-world data set. They do this by performing statistical analysis on the

data and figure out appropriate ways to visualize the information through different plots.

The final project is a significantly more complicated team project. In this project, teams model

the take-off and landing phases of the Falcon 9 rocket. Prior to the start of the final project,

students are introduced to discrete time simulation and spend three weeks modelling systems

with gradually increasing complexity. While certain assumptions are made to make this a

feasible task for students to complete in 3 weeks, the project serves as a comprehensive and

summative assessment of the entire course.

In the final project, students use material from the entire course and are encouraged to look into

commands, in-built functions and techniques that were not covered in the class. They create

multiple user defined functions to determine various physical parameters such as temperature

and pressure at various altitudes. They also create a Graphical User Interface (GUI) of the entire

Proceedings of the 2019 ASEE North Central Section Conference
Copyright © 2019, American Society for Engineering Education

6

system, plotting useful graphs from both the take-off and landing phases. The deliverable of this

project includes a report, with an extended abstract, pseudocode or flowchart, results and

conclusions. Students also submit their GUI and all code related to the project for testing.

Exams: The course has 2 Midterms which require students to create appropriate script files to

solve ‘word problem’ type questions. These questions mimic problems that students are likely to

encounter while using MATLAB in their other classes or in industry. They typically involve

extracting a subset of data, perform some mathematical analysis on it using the programming

techniques that they have learned in the class, visualize the data using appropriate graphs and

plots and write the conclusions to a file. The second midterm tests students understanding of

certain advanced MATLAB components such as GUIs and problem-solving methods such as

interpolation etc.

Tools and Resources

The students who are a part of this course have access to an abundance of additional tools

and resources to help with their overall learning process.

Instructional Team: The instructional team is a core part of the support structure for this course.

For a class of 36 students, there are 2 undergraduate teaching assistants (UTAs) and one

instructor. There are 6 to 7 sections of this course offered every semester. The instructors and the

TAs answer questions in class, on the discussion board, through email and during office hours.

Students have the opportunity of visiting the office hours of any of the 12 to 14 UTAs in addition

to the office hours of the instructor. This means that students can get help on their application

assignments or have their questions answered at most times during the week.

Learning Management System: This course has a learning management system (LMS) which

houses all the course materials such as the syllabus, presentations and videos for each topic,

application questions and associated checkers, access to additional resources, a calendar of things

to come and discussion board for each topic. In addition, students use the LMS to submit their

application assignments, complete periodic journals and see their gradebook. Instructors can also

post announcements on the LMS to alert students about any changes in the material or remind

them about upcoming deadlines.

Custom Checkers: Prior to the release of MATLAB Grader, custom checker scripts were

developed that students could use to validate their code prior to submission. The checkers are

still used for the application assignments, but only as an aide for the students, not for grading. As

in the case of all auto-grading schemes, constraints (such as precise variable names and the

argument list of functions) must be placed on students’ code. In the early assignments, templates

are provided to help students comply with the checker’s requirements.

Since the checkers are only for validation, not grading, their use is optional. However, our

experience has been that most students take advantage of the checkers to validate their answers,

Proceedings of the 2019 ASEE North Central Section Conference
Copyright © 2019, American Society for Engineering Education

7

despite the inconvenience of having to perform an additional step and accepting constraints on

their code.

Conclusions

 This paper describes changes to "Programming in MATLAB for Engineers", a terminal

programming course for students in less computer-oriented engineering majors, such as civil,

chemical and aerospace engineering. Adoption of the latest capabilities from Mathworks – live

scripts, MATLAB Grader, MATLAB Online folder sharing, tutorial videos – has improved the

efficiency and effectiveness of instruction in our second-level MATLAB programming course.

Additional resources – Top Hat polling, custom checker scripts – have been implemented to

improve classroom interactivity and provide rapid feedback to students. Changes in the structure

and content of the course have been made to increase the emphasis on structured programming

and better prepare students to design, implement, and debug complex programs. The initial

offering of the revised course is in progress during the Spring 2019 semester.

References

1. U. Rajashekar, A. C. Bovik, "Interactive DSP education using MATLAB demo", 1st Signal Processing Education

Workshop, Hunt, TX, Oct. 15-18, 2000.

2. S.H. Song et al., “Developing and Assessing MATLAB Exercises for Active Concept Learning,” IEEE Trans.

Education 62 (1): 2 – 10 (2019).

3. A. Azemi and L. Pauley, “Teaching the Introductory Computer Programming Course for Engineers Using

MATLAB,” 38th ASEE/IEEE Frontiers in Education Conference, Saratoga Springs, NY, Oct. 22-25, 2008.

4. M. Herniter, D. Scott, and R. Pagasa, “Teaching Programming Skills with MATLAB,” Proceedings of the 2001

ASEE Annual Conference and Exposition, 6.954.1-9.

5. R. Talbert, “Learning MATLAB in the Inverted Classroom,” Computers in Education Journal 23(2):89-100,

2013.

6. M. Gardner, "Mathematical Games – The fantastic combinations of John Conway's new solitaire game

"life"", Scientific American. 223 (1970), 120–123.

7. L. Pruski and J. Friedman, “An Integrative Approach to Teaching Mathematics, Computer Science, and Physics

with MATLAB,” Mathematics and Computer Education, ISSN: 0730-8639 (Winter 2014), 6 – 18.

8. C. Crouch and E. Mazur, “Peer Instruction: Ten Years of Experience and Results,” Am. J. Phys. 69 (9), 2001,

970-977.

